]> XML-SMF for QED+4F

QED+4F

I. GENERAL PROPERTIES

Full Name: Quantum Electrodynamics with 4-fermion interactions.



Gauge Group and SUSY
Gauge Group SUSY
UEM ( 1 ) No


Fundamental Interactions
Interaction Submodel Charge Existence in the current model Comments
Strong QCD color no
Electromagnetic QED el. charge yes
Weak QFD flavor, hypercharge yes low-energy effective, 4-fermion, neutral currents
Gravity GTR energy no
Nonstandard Interactions no


Higgs Sector
Minimal SM/MSSM Higgs sector Additional Higgs fields
no no


Matter Sector
Number of Generations Neutrino (existence and type) Matter particles beyond SM/MSSM
1 no no


Gauge Conditions
Gauge (Sub)group Condition Existence of ghosts
U(1) Feynman no

II. FIELDS ENTERING THE MODEL

Fields
Physical type Lorentz type Symbol Comments
electromagnetic, gauge U(1), real vector A μ
matter field, complex Dirac spinor ψ
auxiliary, nondynamical, real vector Z μ

III. PARTICLES ENTERING THE MODEL

Particles
Name Symbol Corresponding Field Antiparticle Spin/Helicity Mass
Photon γ A μ γ 1 m γ =0
Electron e - ψ e + 1/2 m e

IV. BASIC PHYSICAL CONSTANTS

Basic constants
Physical meaning Symbol
electron charge g e
sine of the Salam-Weinberg angle sinθ
dimensionful parameter entering the propagator for the auxiliary Z-field M Z

V. DEPENDENT (AUXILIARY) PHYSICAL CONSTANTS

Auxiliary constants
Physical meaning Symbol Relation to others
cosine of the Salam-Weinberg angle cos θ 1 - sin2 θ

VI. REPRESENTATIN OF MATH CONSTANTS

Math constants
Symbol Way of Representation
2 symbolic
π symbolic

VII.FREE LAGRANGIAN DENSITY

L0 = - 14 Fμν Fμν + i ψ γμ μψ - me ψψ - MZ2 Zμ Zμ

Fμν = ν Aμ - μ Aν

VIII.GAUGE CONDITIONS (EXPLICIT FORM)

Gauge Conditions
Gauge Subgroup Name of the Gauge Condition Explicit Form
UEM ( 1 ) Feynman μ Aμ =0

IX. PROPAGATORS

Propagators
Fields Math Expression Diagram Elements
< A μ A ν >0 - ig μν k2 +iε
< Z μ Z ν >0 - ig μν MZ2
< ψ ψ >0 i γμ kμ +me k2 -me2 +iε

X. INTERACTION LAGRANGIAN AND VERTICES

Interaction terms and vertices
Term in the Interaction Lagrangian Factor in Matrix Elements Diagram Elements
ge ψ γμ Aμψ ige γμ (2π) 4 δ(p1 -p2 -k)
ge 4sinθ cosθ ψ [ γμ (1- γ5) -4 sin2θ γμ ] Zμψ i ge 4sinθ cosθ [ γμ (1- γ5) -4 sin2θ γμ ] (2π) 4 δ(p1 -p2 -k)